Objectives: To investigate the diagnostic accuracy and safety of a real-time noninvasive in vivo skin cancer diagnostics utilizing non-discrete molecular LIPS combined with a deep neural network (DNN)-based diagnostic algorithm.
Introduction: Although various skin cancer detection devices have been proposed, most of them are not used owing to their insufficient diagnostic accuracies. Laser-induced plasma spectroscopy (LIPS) can noninvasively extract biochemical information of skin lesions using an ultrashort pulsed laser.
Materials / method: In vivo LIPS spectra were acquired from 296 skin cancers (186 BCCs, 96 SCCs and 14 melanomas) and 316 benign lesions in a multisite clinical study. The diagnostic performance was validated using 10-fold cross-validations.
Results: The sensitivity and specificity for differentiating skin cancers from benign lesions using LIPS and the DNN-based algorithm were 94.3% (95% CI: 91.6 – 96.9%) and 88.6% (95% CI: 85.1 – 92.1%), respectively. No adverse events, including macroscopic or microscopic visible marks or pigmentation due to laser irradiation, were observed.
Conclusion: This LIPS system with a DNN-based diagnostic algorithm is a promising tool to distinguish skin cancers from benign lesions with high diagnostic accuracy in real clinical settings.
Divulgação de informações
Você recebeu algum patrocínio para sua pesquisa neste tema?
Não
Você recebeu algum tipo de honorário, pagamento ou outra forma de compensação por seu trabalho neste estudo?
Não
Você possui relação financeira com alguma entidade que possa competir com os medicamentos, materiais ou instrumentos abordados no seu estudo?
Não
Você detém ou pediu a registro de patente para algum dos instrumentos, medicamentos ou materiais abordados no seu estudo?
Não
Este trabalho não recebeu nenhum patrocínio direto ou indireto. O mesmo está sob a própria responsabilidade do seu autor.